Dominado Números e Letras
Clique!
Em matemática, funções polinomiais, polinômios (português brasileiro) são uma classe importante de funções simples e infinitamente diferenciáveis. Devido à natureza da sua estrutura, os polinómios são muito simples de se avaliar e por consequência são usados extensivamente em análise numérica.Assista aos vídeos:
Para polinômios podemos encontrar várias definições diferentes como: Polinômio é uma expressão algébrica com todos os termos semelhantes reduzidos. Polinômio é um ou mais monômios separados por operações.
As duas podem ser aceitas, pois se pegarmos um polinômio encontraremos nele uma expressão algébrica e monômios separados por operações.
• 3xy é monômio, mas também considerado polinômio, assim podemos dividir os polinômios em monômios (apenas um monômio), binômio (dois monômios) e trinômio (três monômios).
• 3x + 5 é um polinômio e uma expressão algébrica.
As duas podem ser aceitas, pois se pegarmos um polinômio encontraremos nele uma expressão algébrica e monômios separados por operações.
• 3xy é monômio, mas também considerado polinômio, assim podemos dividir os polinômios em monômios (apenas um monômio), binômio (dois monômios) e trinômio (três monômios).
• 3x + 5 é um polinômio e uma expressão algébrica.
-
Adição e subtração de polinômio
Redução de Polinômios. -
Binômio de Newton: desenvolvendo a expressão (a + b)n
Desenvolvendo a expressão (a + b)n. -
Divisão de Polinômio por Monômio
Matemática, expressão algébrica, divisão, polinômio, monômio, divisão de monômio por monômio, divisão de polinômio por monômio, cálculo algébrico, grau de um polinômio, potência de um polinômio. -
Divisão de polinômio por polinômio
Monômios, Polinômios, Divisão de polinômio por polinômio, Dividendo, Divisor, Quociente, Resto, Prova Real, Multiplicação de polinômios, Resto menor que o divisor, Resto maior que o divisor. -
Frações polinomiais idênticas
: polinômio, definição de polinômio, fração, fração polinomial, Frações polinomiais idênticas, membros de uma igualdade, igualdade de duas frações, igualdade de duas frações idênticas. -
Mínimo Múltiplo Comum de Polinômio
Determinação do mmc de polinômios na resolução de equações algébricas fracionárias. -
Multiplicação com polinômios
Polinômio, Monômios, Soma de monômios, Adição de Polinômios, Subtração de Polinômios, Monômios semelhantes, Multiplicação de monômio por polinômio, Multiplicação de polinômio por polinômio. -
Multiplicação e divisão de monômios
Multiplicação, Multiplicação de monômio por monômio, Multiplicação de monômios, Monômio, Polinômio, Divisão de monômios, divisão de monômio por monômio, divisão, polinômios. -
Polinômios
Introdução ao estudo dos polinômios. -
Teorema de D’Alembert
binômio, polinômio, divisão de polinômio por binômio, divisão, teorema do resto, teorema D’Alembert, definição do teorema do resto, definição do teorema de D’Alembert, resto de uma divisão, resto igual à zero.
Exercícios:
01. Calcular o valor numérico do polinômio P(x) = x3 - 7x2 + 3x - 4 para x = 2.
02. Determinar os valores reais de a e b para que o polinômio x3 + 6x2 + ax + b seja um cubo perfeito.
03. (UESB) Se P(x) = xn - xn-1 + xn-2 - ... + x2 - x + 1 e P(-1) = 19, então n é igual a:
a) 10
b) 12s
c) 14
d) 16
e) 18
04. (UBERL) Se P(x) é um polinômio tal que 2P(x) + x2 P(x - 1) ≡ x3 + 2x + 2, então P(1) é igual a:
a) 0
b) -1
c) 1
d) -2
e) 2
05. As soluções da equação Q(x) = 0, em que Q(x) é o quociente do polinômio x4 - 10x3 + 24x2 + 10x - 24 por x2 - 6x + 5, são:
a) -1 e 5
b) -1 e -5
c) 1 e -5
d) 1 e 5
e) 0 e 1
06. (UESP) Se o polinômio P(x) = x3 + mx2 - 1 é divisível por x2 + x - 1, então m é igual a:
a) -3
b) -2
c) -1
d) 1
e) 2
07. (UEL) Dividindo-se o polinômio x4 + 2x3 - 2x2 - 4x - 21 por x + 3, obtêm-se:
a) x3 - 2x2 + x -12 com resto nulo;
b) x3 - 2x2 + 3 com resto 16;
c) x3 - x2 -13x + 35 e resto 84;
d) x3 - x2 - 3x + 1com resto 2;
e) x3 - x2 + x -7 e resto nulo;
08. (UEL) Se o resto da divisão do polinômio p = x4 - 4x3 - kx - 75 por (x - 5) é 10, o valor de k é:
a) -5
b) -4
c) 5
d) 6
e)
09. Sejam m e n determinados de tal modo que o polinômio x4 - 12x3 + 47x2 + mx + n seja divisível por
x2 - 7x + 6. Então m + n é igual a:
a) 72
b) 0
c) -36
d) 36
e) 58
10. Para que o polinômio 2x4 - x3 + mx2 - nx + 2 seja divisível por x2 - x - 2, devemos ter:
a) m = 1 e n = 6
b) m = -6 e n = -1
c) m = 6 e n = 1
d) m = -6 e n = 1
e) m = 6 e n = -1
Resolução:
01. P(2) = -18
02. a = 12 e b = 8
02. Determinar os valores reais de a e b para que o polinômio x3 + 6x2 + ax + b seja um cubo perfeito.
03. (UESB) Se P(x) = xn - xn-1 + xn-2 - ... + x2 - x + 1 e P(-1) = 19, então n é igual a:
a) 10
b) 12s
c) 14
d) 16
e) 18
04. (UBERL) Se P(x) é um polinômio tal que 2P(x) + x2 P(x - 1) ≡ x3 + 2x + 2, então P(1) é igual a:
a) 0
b) -1
c) 1
d) -2
e) 2
05. As soluções da equação Q(x) = 0, em que Q(x) é o quociente do polinômio x4 - 10x3 + 24x2 + 10x - 24 por x2 - 6x + 5, são:
a) -1 e 5
b) -1 e -5
c) 1 e -5
d) 1 e 5
e) 0 e 1
06. (UESP) Se o polinômio P(x) = x3 + mx2 - 1 é divisível por x2 + x - 1, então m é igual a:
a) -3
b) -2
c) -1
d) 1
e) 2
07. (UEL) Dividindo-se o polinômio x4 + 2x3 - 2x2 - 4x - 21 por x + 3, obtêm-se:
a) x3 - 2x2 + x -12 com resto nulo;
b) x3 - 2x2 + 3 com resto 16;
c) x3 - x2 -13x + 35 e resto 84;
d) x3 - x2 - 3x + 1com resto 2;
e) x3 - x2 + x -7 e resto nulo;
08. (UEL) Se o resto da divisão do polinômio p = x4 - 4x3 - kx - 75 por (x - 5) é 10, o valor de k é:
a) -5
b) -4
c) 5
d) 6
e)
09. Sejam m e n determinados de tal modo que o polinômio x4 - 12x3 + 47x2 + mx + n seja divisível por
x2 - 7x + 6. Então m + n é igual a:
a) 72
b) 0
c) -36
d) 36
e) 58
10. Para que o polinômio 2x4 - x3 + mx2 - nx + 2 seja divisível por x2 - x - 2, devemos ter:
a) m = 1 e n = 6
b) m = -6 e n = -1
c) m = 6 e n = 1
d) m = -6 e n = 1
e) m = 6 e n = -1
Resolução:
01. P(2) = -18
02. a = 12 e b = 8
03. E | 04. E | 05. A | 06. E |
07. E | 08. E | 09. C | 10. D |
Referências:
http://pt.wikipedia.org/wiki/Polin%C3%B3mio
http://www.brasilescola.com/matematica/polinomios.htm
http://pessoal.sercomtel.com.br/matematica/medio/polinom/polinom.htm
http://www.coladaweb.com/exercicios-resolvidos/exercicios-resolvidos-de-matematica/polinomios
http://www.juliobattisti.com.br/tutoriais/jorgeasantos/matematicaconcursos022.asp
Nenhum comentário:
Postar um comentário