Equações Parte III


Equações do 2º grau

 



Em matemática, uma equação quadrática ou equação do segundo grau é uma equação polinomial de grau dois. A forma geral deste tipo de equação é:


ax2 + bx + c = 0
onde x é uma variável, e a, b e c são constantes, das quais a ≠ 0 (caso contrário, a equação torna-se linear). As constantes a, b e c, são chamadas respectivamente de coeficiente quadrático, coeficiente linear e coeficiente constante ou termo livre. A variável x representa um valor a ser determinado, e também é chamada de incógnita. O termo "quadrático" vem de quadratus, que em latim significa quadrado. Equações quadráticas podem ser resolvidas através da fatoração, do completamento de quadrados, do uso de gráficos, da aplicação do método de Newton ou do uso de uma fórmula (apresentada abaixo). Um uso frequente das equações do segundo grau é no cálculo das trajetórias de projéteis em movimento.

Assista aos vídeos:









Fórmula


x = \frac{-b \pm \sqrt{b^2-4ac}}{2a},

Demonstração

Se a\not = 0 então:

\definecolor{gray}{RGB}{249,249,249}\pagecolor{gray}\begin{matrix} ax^2 + bx + c = 0 \Leftrightarrow \\ \\
(4a)(ax^2 + bx + c) = (4a)\cdot 0 \Leftrightarrow \\ \\
4a^2x^2 + 4abx + 4ac = 0 \Leftrightarrow \\ \\
(2ax)^2 + 2(2ax)b = -4ac \Leftrightarrow \\ \\
(2ax)^2 + 2(2ax)b + b^2 = -4ac + b^2 \Leftrightarrow \\ \\
(2ax + b)^2 = b^2 - 4ac\Leftrightarrow \\ \\
\left|2ax + b\right| = \sqrt{b^2 - 4ac} \end{matrix}
Logo, tem-se, por definição de módulo, que:
Se \definecolor{darkgray}{RGB}{170,170,170}\pagecolor{darkgray}(2ax+b) \ge 0 Se \definecolor{darkgray}{RGB}{170,170,170}\pagecolor{darkgray}(2ax+b) < 0
\definecolor{gray}{RGB}{249,249,249}\pagecolor{gray}\begin{matrix} 2ax + b = \sqrt{b^2 - 4ac} \Leftrightarrow \\ \\
2ax = \sqrt{b^2 - 4ac} - b \Leftrightarrow \\ \\
x = \frac{ -b + \sqrt{b^2 - 4ac}}{2a} \end{matrix} \definecolor{gray}{RGB}{249,249,249}\pagecolor{gray}\begin{matrix} -(2ax + b) = \sqrt{b^2 - 4ac} \Leftrightarrow \\ \\
2ax + b = - \sqrt{b^2 - 4ac} \Leftrightarrow \\ \\
2ax = - \sqrt{b^2 - 4ac} - b \Leftrightarrow \\ \\
x = \frac{ -b - \sqrt{b^2 - 4ac}}{2a} \end{matrix}
Portanto,



\definecolor{gray}{RGB}{249,249,249}\pagecolor{gray}x=\left \{\begin{matrix} \frac{-b + \sqrt{b^2 - 4ac}}{2a} \rightarrow r_1 \\ \\
\frac{-b - \sqrt{b^2 - 4ac}}{2a} \rightarrow r_2 \end{matrix}\right.\Rightarrow x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}


Forma fatorada da equação quadrática

O termo
x - r\,
é um fator do polinômio
ax^2+bx+c, \
se e somente se r é uma raiz da equação quadrática
ax^2+bx+c=0. \
Segue da fórmula quadrática que
ax^2+bx+c = a \left( x - \frac{-b + \sqrt {b^2-4ac}}{2a} \right) \left( x - \frac{-b - \sqrt {b^2-4ac}}{2a} \right) = a \left [(x - r_1)(x - r_2)\right ].
No caso especial em que a quadrática possui apenas uma raiz (b2 = 4ac, isto é, discriminante nulo), o polinômio quadrático pode ser fatorado como
ax^2+bx+c = a \left( x + \frac{b}{2a} \right)^2 =  a (x - r)^2

Relações entre coeficientes e raízes

As fórmulas de Viète fornecem uma relação simples entre as raízes de um polinômio e seus coeficientes. No caso do polinômio quadrático, elas tomam a seguinte forma A partir de fórmula de Bhaskara, pode-se deduzir expressões bastante simples para a soma e para o produto das raízes r1 e r2 da equação:
 x_1 + x_2 = -\frac{b}{a}
e
 x_1 \ x_2 = \frac{c}{a}.
Estas igualdades seguem diretamente da relação:
\left( x - x_1 \right) \ \left( x-x_2 \right ) = x^2 \ - \left( x_1+x_2 \right)x +x_1 \ x_2 \ = 0 \ ,
que pode ser comparada termo a termo com:
 x^2 + (b/a)x +c/a = 0 \ .
Em alguns casos simples, o uso dessas propriedades permite que se deduza quais são as raízes, pela simples inspeção visual e tentativa de composição de dois números que satisfaçam as relações dadas para a soma e para o produto das raízes.
A primeira das duas fórmulas fornece também uma expressão conveniente ao traçar o gráfico de uma função quadrática. Uma vez que o gráfico é simétrico com relação a uma reta vertical passando pelo vértice da parábola, quando há duas raízes reais a abscissa do vértice está localizada na média aritmética das duas raízes, isto é, seu valor é dado pela expressão:
 x_V = \frac {x_1 + x_2} {2} = -\frac{b}{2a}.
A outra coordenada pode ser obtida através da substituição do resultado anterior na expressão quadrática, resultando em
 y_V = - \frac{b^2}{4a} + c = - \frac{ b^2 - 4ac} {4a}.
Assim, o gráfico da função f(x) = ax2 + bx + c será sempre uma parábola com vértice em
V=\left( \frac{-b}{2a},\frac{-\Delta}{4a} \right).
Para um estudo mais detalhado do gráfico, ver função quadrática.

Gráfico de duas avaliações da menor raiz de uma quadrática: avaliação direta através da fórmula quadrática (preciso no pequenos valores de b) e uma aproximação para raízes amplamente espaçadas (preciso para grandes valores de b). A diferença atinge um mínimo nos pontos grandes, e o arredondamento provoca rabiscos na curva acima deste valor mínimo.
Em termos práticos, as fórmulas de Viète fornecem um método útil para a busca de raízes de uma quadrática no caso em que uma raiz é bem menor do que a outra. Se |x1| << |x2|, então x1 + x2x1, e tem-se a estimativa:
 x_1 \approx -\frac{b}{a} \ .
Da segunda fórmula de Viète resulta:
x_2 = \frac{c}{a \ x_1} \approx -\frac{c}{b} \ .
Estas fórmulas são mais fáceis de avaliar do que a fórmula de Bhaskara sob a condição de que uma raiz é grande e uma pequena, porque a fórmula de resolução de equações quadráticas avalia a raíz menor como a diferença entre dois numeros praticamente iguais (no caso em que b é grande), o que causa erros de arredondamento em avaliações numéricas. A figura ao lado mostra a diferença entre (i) um calculo direto usando a fórmula de Bhaskara (preciso quando as raízes têm valores próximos) e (ii) uma avaliação baseada na aproximação das fórmulas de Viète dadas acima (precisa quando as raízes estão bem separadas). Conforme o coeficiente linear b aumenta, inicialmente a fórmula quadrática é precisa, e a a fórmula aproximada melhora sua precisão, levando a pequenas diferenças entre os métodos ao aumentar b. No entanto, em algum ponto a fórmula de Bhaskara começa a perder precisão devido aos erros de arredondamento, enquanto o método aproximado continua a melhorar. Consequentemente a diferença entre os métodos começa a aumentar ao paço que a fórmula de Bhaskara fica cada vez pior.
Esta situação aparece com frequência em design de amplificadores, onde raízes é desejável raízes bastante separadas para garantir uma operação estável.


Outras Relações entre as Raízes

Denotando-se as raízes de uma equação do segundo grau por r1 e r2, sua soma por S = r1 + r2 e seu produto por P = r_1 \cdot r_2, verificam-se as seguintes relações entre as raízes:
Expressão envolvendo as raízes Definição Relação com S e P
Soma do inverso das raízes \textstyle\frac{1}{r_1}+\frac{1}{r_2} \textstyle\frac{S}{P}
Soma dos quadrados das raízes r_1^2+r_2^2 S2 − 2P
Soma dos quadrados dos inversos das raízes \textstyle\frac{1}{r_1^2}+\frac{1}{r_2^2} \textstyle\frac{S^2-2P}{P^2}
Soma dos cubos das raízes r_1^3 + r_2^3 S^3 - 3S \cdot P
Média aritmética das raízes \textstyle\frac{r_1 + r_2}{2} \textstyle\frac{S}{2}
Média geométrica das raízes \sqrt{r_1 \cdot r_2} \sqrt{P}
Média harmônica das raízes \textstyle\frac{1}{\frac{\frac{1}{r_1}+\frac{1}{r_2}}{2}} \textstyle\frac{2P}{S}



Resolução das equações incompletas

c=0

É uma equação no formato ax2 + bx = 0. A solução é feita da seguinte forma: ax^2+bx=0 \Leftrightarrow x(ax+b)=0. Portanto, x = 0 ou ax+b=0 \Leftrightarrow x=- \frac{b}{a}. Nesse caso, uma das raízes será sempre zero e a outra será real (se os coeficientes o forem).

 b=0

É uma equação no formato ax2 + c = 0. A resolução é feita deste modo: ax^2+c=0 \Leftrightarrow ax^2=-c \Leftrightarrow x^2=- \frac{c}{a} \Leftrightarrow x= \sqrt{- \frac{c}{a}}. Por isso, \frac{c}{a}<0, ou a equação não terá raízes reais. No caso delas serem reais, as raízes serão simétricas.



EXERCÍCIOS

1. Calcular o discriminante de cada equação e analisar as raízes em cada caso:

a) x² + 9 x + 8 = 0 (R:-1 e -8)
b) 9 x² - 24 x + 16 = 0 (R:4/3)
c) x² - 2 x + 4 = 0 (vazio)
d) 3 x² - 15 x + 12 = 0 (R: 1 e 4)
e) 10 x² + 72 x - 64 = 0 (R:-8 e 4/5)
e) 5x² - 3x - 2 = 0
f) x² - 10x + 25 = 0
g) x² - x - 20 = 0
h) x² - 3x -4 = 0
i) x² - 8x + 7 = 0



RESOLVA AS EQUAÇÕES DE 2º GRAU


1) x² - 5x + 6 = 0 _____(R:2,3)
2) x² - 8x + 12 = 0 ______(R:2,6)
3) x² + 2x - 8 = 0______ (R:2,-4)
4) x² - 5x + 8 = 0 ______(R:vazio)
5) 2x² - 8x + 8 = 0_______ (R:2,) 
6) x² - 4x - 5 = 0_______ (R:-1, 5)
7) -x² + x + 12 = 0_______ (R:-3, 4)
8) -x² + 6x - 5 = 0_______ (R:1,5)
9) 6x² + x - 1 = 0______ (R:1/3 , -1/2)
10) 3x² - 7x + 2 = 0 ______(R:2, 1/3)
11) 2x² - 7x = 15 _______(R:5, -3/2)
12) 4x² + 9 = 12x______ (R:3/2)
13) x² = x + 12 ______(R:-3 , 4)
14) 2x² = -12x - 18 _____(R:-3 )
15) x² + 9 = 4x_____ (R: vazio)
16) 25x² = 20x – 4 ____(R: 2/5)
17) 2x = 15 – x² ______(R: 3 , -5)
18) x² + 3x – 6 = -8____ (R:-1 , -2)
19) x² + x – 7 = 5 ____(R: -4 , 3)
20) 4x² - x + 1 = x + 3x² ___(R: 1)
21) 3x² + 5x = -x – 9 + 2x²____ (R: -3)
22) 4 + x ( x - 4) = x _____(R: 1,4)
23) x ( x + 3) – 40 = 0 _____(R: 5, -8)
24) x² + 5x + 6 = 0 _____(R:-2,-3)
25) x² - 7x + 12 = 0 _____(R:3,4)
26) x² + 5x + 4 = 0 _____(R:-1,-4)
27) 7x² + x + 2 = 0 _____(vazio) 
28) x² - 18x + 45 = 0 _____(R:3,15)
29) -x² - x + 30 = 0 _____(R:-6,5)
30) x² - 6x + 9 = 0 _____(R:3)
31) ( x + 3)² = 1_______(R:-2,-4)
32) ( x - 5)² = 1_______(R:3,7)
33)( 2x - 4)² = 0_______(R:2)
34) ( x - 3)² = -2x²_______(R:vazio)

35)Na equação 3x² - 12 = 0 as soluções são:
a)0 e 1
b)-1 e 1
c)-2 e 2 (x)
d)-3 e 3
e)0 e 4

36) x² + 3x - 28 = 0 (R: -7,4)
37) 3x² - 4x + 2 = 0 (R: vazio)
38) x² - 3 = 4x + 2 (R: -1,5)




PROBLEMAS COM EQUAÇÃO DO 2° GRAU



1) A soma de um numero com o seu quadrado é 90. Calcule esse numero. (R:9 e-10)

2) A soma do quadrado de um número com o próprio número é 12. Calcule esse numero (R: 3 e -4)

3) O quadrado menos o dobro de um número é igual a -1. Calcule esse número. (R:1)

4) A diferença entre o quadrado e o dobro de um mesmo número é 80. Calcule esse número (R:10 e -8)

5) O quadrado de um número aumentado de 25 é igual a dez vezes esse número. Calcule esse número (R: 5)

6) A soma do quadrado de um número com o seu triplo é igual a 7 vezes esse número. Calcule esse número.(R: 0 e 4)

7) O quadrado menos o quádruplo de um numero é igual a 5. Calcule esse número (R: 5 e -1)

8) O quadrado de um número é igual ao produto desse número por 3, mais 18. Qual é esse numero? (R: 6 e -3)

9) O dobro do quadrado de um número é igual ao produto desse numero por 7 menos 3. Qual é esse numero? (R:3 e ½)

10) O quadrado de um número menos o triplo do seu sucessivo é igual a 15. Qual é esse numero?(R: 6 e -3)

11) Qual o número que somado com seu quadrado resulta em 56? (R:-8 e 7)

12) Um numero ao quadrado mais o dobro desse número é igual a 35. Qual é esse número ? (R:-7 e 5)

13) O quadrado de um número menos o seu triplo é igual a 40. Qual é esse número? (R:8 e -5)

14) Calcule um número inteiro tal que três vezes o quadrado desse número menos o dobro desse número seja igual a 40. (R:4)

15) Calcule um número inteiro e positivo tal que seu quadrado menos o dobro desse número seja igual a 48. (R:8)

16) O triplo de um número menos o quadrado desse número é igual a 2. Qual é esse número? (R:1 e 2)

17) Qual é o número , cujo quadrado mais seu triplo é igual a 40? ( R: 5 , -8)

18) O quadrado de um número diminuido de 15 é igual ao seu dobro. Calcule esse número.
(R: 5 e -3)

19) Determine um número tal que seu quadrado diminuído do seu triplo é igual a 26. (R:7 e -4)

20) Se do quadrado de um número, negativo subtraimos 7, o resto será 42. Qual é esse número?
(R: -7)

21) A diferença entre o dobro do quadrado de um número positivo e o triplo desse número é 77. Calcule o número. (R: 7)

22) Determine dois números ímpares consecutivos cujo produto seja 143. (R: 11 e 13 ou -11, -13)

23) Um azulejista usou 2000 azulejos quadrados e iguais para revestir 45m² de parede. Qual é a medida do lado de cada azulejo? (R:15 cm)



RESOLUÇÃO DE EQUAÇÃO INCOMPLETAS



Resolver uma equação é determinar todas as suas soluções. Vejamos, através de exemplos, como se resolvem as equações incompletas do 2° grau

1° CASO – equações da forma ax² + c = 0, (b = 0)

Exemplos:

1) x² - 25 = 0
x² = 25
x = √25
x = 5
logo V= (+5 e -5)

2) 2x² - 18 = 0
2x² = 18
x² = 18/2
x² = 9
x = √9
x = 3
logo V= (-3 e +3)

3) 7x² - 14 = 0
7x² = 14
x² = 14/7
x² = 2
x = √2
logo V = (-√2 e +√2)

4) x²+ 25 = 0
x² = -25
x = √-25
obs: não existe nenhum número real que elevado ao quadrado seja igual a -25

EXERCÍCIOS

1) Resolva as seguintes equações do 2° grau

a) x² - 49 = 0 (R: -7 e +7)
b) x² = 1 (R: +1 e -1)
c) 2x² - 50 = 0 (R: 5 e -5)
d) 7x² - 7 = 0 (R: 1 e -1)
e) 5x² - 15 = 0 (R: √3 e -√3)
f) 21 = 7x² (R: √3 e -√3)
g) 5x² + 20 = 0 (R: vazio)
h) 7x² + 2 = 30 (R: 2 e -2 )
i) 2x² - 90 = 8 (R: 7 e -7)
j) 4x² - 27 = x² (R:3 e -3)
k) 8x² = 60 – 7x² (R: 2 e -2)
l) 3(x² - 1 ) = 24 (R: 3 e -3)
m) 2(x² - 1) = x² + 7 (R:3 e -3)
n) 5(x² - 1) = 4(x² + 1) (R:3 e -3)
o) (x – 3)(x + 4) + 8 = x (R:2 e -2)

2° CASO: Equações da forma ax² + bx = 0 ( c = 0)

Propriedade: Para que um produto seja nulo é preciso que um dos fatores seja zero .

Exemplos

1) resolver x² - 5x = 0
fatorando x ( x – 5) = 0

deixando um dos fatores nulo temos x = 0

e o outro x – 5 = 0 , passando o 5 para o outro lado do igual temos x = 5

logo V= (0 e 5)

2) resolver: 3x² - 10x = 0
fatorando: x (3x – 10) = 0

deixando um dos fatores nulo temos x = 0

Tendo também 3x – 10 = 0
3x = 10
x = 10/3

logo V= (0 e 10/3)

Observe que, nesse caso, uma das raízes é sempre zero.


EXERCÍCIOS

1) Resolva as seguintes equações do 2° grau.

a) x² - 7x = 0 (R: 0 e 7)
b) x² + 5x = 0 (R: 0 e -5)
c) 4x² - 9x = 0 (R: 0 e 9/4)
d) 3x² + 5x =0 (R: 0 e -5/3)
e) 4x² - 12x = 0 (R: 0 e 3)
f) 5x² + x = 0 (R: 0 e -1/5)
g) x² + x = 0 (R: 0 e -1)
h) 7x² - x = 0 (R: 0 e 1/7)
i) 2x² = 7x (R: 0 e 7/2)
j) 2x² = 8x (R: 0 e 4)
k) 7x² = -14x (R: 0 e -2)
l) -2x² + 10x = 0 (R: 0 e 5)

2) Resolva as seguintes equações do 2° grau

a) x² + x ( x – 6 ) = 0 (R: 0 e 3)
b) x(x + 3) = 5x (R: 0 e 2)
c) x(x – 3) -2 ( x-3) = 6 (R: 0 e 5)
d) ( x + 5)² = 25 (R: 0 e -10)
e) (x – 2)² = 4 – 9x (R: 0 e -5)
f) (x + 1) (x – 3) = -3 (R: 0 e 2)


Enunciado1) O triplo do quadrado do número de filhos de Pedro é igual a 63 menos 12 vezes o número de filhos. Quantos filhos Pedro tem?
Enunciado2) Uma tela retangular com área de 9600cm2 tem de largura uma vez e meia a sua altura. Quais são as dimensões desta tela?
Enunciado3) O quadrado da minha idade menos a idade que eu tinha 20 anos atrás e igual a 2000. Quantos anos eu tenho agora?
Enunciado4) Comprei 4 lanches a um certo valor unitário. De outro tipo de lanche, com o mesmo preço unitário, a quantidade comprada foi igual ao valor unitário de cada lanche. Paguei com duas notas de cem reais e recebi R$ 8,00 de troco. Qual o preço unitário de cada produto?
Enunciado5) O produto da idade de Pedro pela idade de Paulo é igual a 374. Pedro é 5 anos mais velho que Paulo. Quantos anos tem cada um deles?
Enunciado6) Há dois números cujo triplo do quadrado é a igual 15 vezes estes números. Quais números são estes?
Enunciado7) Quais são as raízes da equação x2 - 14x + 48 = 0?
Enunciado8) O dobro do quadrado da nota final de Pedrinho é zero. Qual é a sua nota final?
Enunciado9) Solucione a equação biquadrada: -x4 + 113x2 - 3136 = 0.
Enunciado10) Encontre as raízes da equação biquadrada: x4 - 20x2 - 576 = 0.


Exercícios de Equações de 2º Grau
1) Identifique os coeficientes de cada equação e diga se ela é completa ou não:
a) 5x2 - 3x - 2 = 0
b) 3x2  + 55 = 0
c) x2 - 6x = 0
d) x2 - 10x + 25 = 0


2) Achar as raízes das equações:
a) x2 - x - 20 = 0
b) x2 - 3x -4 = 0
c) x2 - 8x + 7 = 0


3) Dentre os números -2, 0, 1, 4, quais deles são raízes da equação x2-2x-8= 0? 


4) O número -3 é a raíz da equação x2 - 7x - 2c = 0. Nessas condições, determine o valor do coeficiente c:



5) Se você multiplicar um número real x por ele mesmo e do resultado subtrair 14, você vai obter o quíntuplo do número x. Qual é esse número?





Nenhum comentário:

Postar um comentário