Exercícios
Raciocinio Logico Prova 1 AFC 2002 |
51 - Ou Lógica é fácil, ou Artur não gosta de Lógica. Por outro lado, se Geografia não é difícil, então Lógica é difícil. Daí segue-se que, se Artur gosta de Lógica, então:
a) Se Geografia é difícil, então Lógica é difícil.
b) Lógica é fácil e Geografia é difícil.
c) Lógica é fácil e Geografia é fácil.
d) Lógica é difícil e Geografia é difícil.
e) Lógica é difícil ou Geografia é fácil.
53 - Um agente de viagens atende três amigas. Uma delas é loura, outra é morena e a outra é ruiva. O agente sabe que uma delas se chama Bete, outra se chama Elza e a outra se chama Sara. Sabe, ainda, que cada uma delas fará uma viagem a um país diferente da Europa: uma delas irá à Alemanha, outra irá à França e a outra irá à Espanha. Ao agente de viagens, que queria identificar o nome e o destino de cada uma, elas deram as seguintes informações:A loura: “Não vou à França nem à Espanha”. A morena: “Meu nome não é Elza nem Sara”. A ruiva: “Nem eu nem Elza vamos à França”.O agente de viagens concluiu, então, acertadamente, que:
a) A loura é Sara e vai à Espanha.
b) A ruiva é Sara e vai à França.
c) A ruiva é Bete e vai à Espanha.
d) A morena é Bete e vai à Espanha.
e) A loura é Elza e vai à Alemanha.
54 - Dizer que não é verdade que Pedro é pobre e Alberto é alto, é logicamente equivalente a dizer que é verdade que:
a) Pedro não é pobre ou Alberto não é alto.
b) Pedro não é pobre e Alberto não é alto.
c) Pedro é pobre ou Alberto não é alto.
d) se Pedro não é pobre, então Alberto é alto.
e) se Pedro não é pobre, então Alberto não é alto.
55 - Se Carina é amiga de Carol, então Carmem é cunhada de Carol. Carmem não é cunhada de Carol. Se Carina não é cunhada de Carol, então Carina é amiga de Carol. Logo,
a) Carina é cunhada de Carmem e é amiga de Carol.
b) Carina não é amiga de Carol ou não é cunhada de Carmem.
c) Carina é amiga de Carol ou não é cunhada de Carol.
d) Carina é amiga de Carmem e é amiga de Carol.
e) Carina é amiga de Carol e não é cunhada de Carmem.
56 - Cinco aldeões foram trazidos à presença de um velho rei, acusados de haver roubado laranjas do pomar real. Abelim, o primeiro a falar, falou tão baixo que o rei – que era um pouco surdo – não ouviu o que ele disse. Os outros quatro acusados disseram:Bebelim: “Cebelim é inocente”.Cebelim: “Dedelim é inocente”.Dedelim: “Ebelim é culpado”.Ebelim: “Abelim é culpado”.O mago Merlim, que vira o roubo das laranjas e ouvira as declarações dos cinco acusados, disse então ao rei: “Majestade, apenas um dos cinco acusados é culpado, e ele disse a verdade; os outros quatro são inocentes e todos os quatro mentiram”. O velho rei, que embora um pouco surdo era muito sábio, logo concluiu corretamente que o culpado era:
a) Abelim
b) Bebelim
c) Cebelim
d) Dedelim
e) Ebelim
57 - Pedro saiu de casa e fez compras em quatro lojas, cada uma num bairro diferente. Em cada uma gastou a metade do que possuía e, ao sair de cada uma das lojas pagou R$ 2,00 de estacionamento. Se no final ainda tinha R$ 8,00, que quantia tinha Pedro ao sair de casa?
a) R$ 220,00
b) R$ 204,00
c) R$ 196,00
d) R$ 188,00
e) R$ 180,00
60 - A expressão dada por y = 4 (cosseno x) + 4 é definida para todo número x real. Assim, o intervalo de variação de y é:
a) -4
d) 0 <_y <4
e) 0
a) Se Geografia é difícil, então Lógica é difícil.
b) Lógica é fácil e Geografia é difícil.
c) Lógica é fácil e Geografia é fácil.
d) Lógica é difícil e Geografia é difícil.
e) Lógica é difícil ou Geografia é fácil.
53 - Um agente de viagens atende três amigas. Uma delas é loura, outra é morena e a outra é ruiva. O agente sabe que uma delas se chama Bete, outra se chama Elza e a outra se chama Sara. Sabe, ainda, que cada uma delas fará uma viagem a um país diferente da Europa: uma delas irá à Alemanha, outra irá à França e a outra irá à Espanha. Ao agente de viagens, que queria identificar o nome e o destino de cada uma, elas deram as seguintes informações:A loura: “Não vou à França nem à Espanha”. A morena: “Meu nome não é Elza nem Sara”. A ruiva: “Nem eu nem Elza vamos à França”.O agente de viagens concluiu, então, acertadamente, que:
a) A loura é Sara e vai à Espanha.
b) A ruiva é Sara e vai à França.
c) A ruiva é Bete e vai à Espanha.
d) A morena é Bete e vai à Espanha.
e) A loura é Elza e vai à Alemanha.
54 - Dizer que não é verdade que Pedro é pobre e Alberto é alto, é logicamente equivalente a dizer que é verdade que:
a) Pedro não é pobre ou Alberto não é alto.
b) Pedro não é pobre e Alberto não é alto.
c) Pedro é pobre ou Alberto não é alto.
d) se Pedro não é pobre, então Alberto é alto.
e) se Pedro não é pobre, então Alberto não é alto.
55 - Se Carina é amiga de Carol, então Carmem é cunhada de Carol. Carmem não é cunhada de Carol. Se Carina não é cunhada de Carol, então Carina é amiga de Carol. Logo,
a) Carina é cunhada de Carmem e é amiga de Carol.
b) Carina não é amiga de Carol ou não é cunhada de Carmem.
c) Carina é amiga de Carol ou não é cunhada de Carol.
d) Carina é amiga de Carmem e é amiga de Carol.
e) Carina é amiga de Carol e não é cunhada de Carmem.
56 - Cinco aldeões foram trazidos à presença de um velho rei, acusados de haver roubado laranjas do pomar real. Abelim, o primeiro a falar, falou tão baixo que o rei – que era um pouco surdo – não ouviu o que ele disse. Os outros quatro acusados disseram:Bebelim: “Cebelim é inocente”.Cebelim: “Dedelim é inocente”.Dedelim: “Ebelim é culpado”.Ebelim: “Abelim é culpado”.O mago Merlim, que vira o roubo das laranjas e ouvira as declarações dos cinco acusados, disse então ao rei: “Majestade, apenas um dos cinco acusados é culpado, e ele disse a verdade; os outros quatro são inocentes e todos os quatro mentiram”. O velho rei, que embora um pouco surdo era muito sábio, logo concluiu corretamente que o culpado era:
a) Abelim
b) Bebelim
c) Cebelim
d) Dedelim
e) Ebelim
57 - Pedro saiu de casa e fez compras em quatro lojas, cada uma num bairro diferente. Em cada uma gastou a metade do que possuía e, ao sair de cada uma das lojas pagou R$ 2,00 de estacionamento. Se no final ainda tinha R$ 8,00, que quantia tinha Pedro ao sair de casa?
a) R$ 220,00
b) R$ 204,00
c) R$ 196,00
d) R$ 188,00
e) R$ 180,00
60 - A expressão dada por y = 4 (cosseno x) + 4 é definida para todo número x real. Assim, o intervalo de variação de y é:
a) -4
d) 0 <_y <4
e) 0
61 - Em um passeio de moto, um dos participantes vai de Curitiba a São Paulo a uma velocidade média de 50 Km por hora; após, retorna de São Paulo para Curitiba a uma velocidade média de 75 Km/h. Considerando todo o percurso de ida e volta, a velocidade média, em Km/h foi de:
a) 60
b) 62,5
c) 65
d) 70
e) 72,5
b) 0 < y <_8
c) -00
a) 60
b) 62,5
c) 65
d) 70
e) 72,5
b) 0 < y <_8
c) -00
62 - Em um aquário há peixes amarelos e vermelhos: 80% são amarelos e 20% são vermelhos. Uma misteriosa doença matou muitos peixes amarelos, mas nenhum vermelho. Depois que a doença foi controlada, verificou-se que 60% dos peixes vivos, no aquário, eram amarelos. Sabendo que nenhuma outra alteração foi feita no aquário, o percentual de peixes amarelos que morreram foi:
a) 20 %
b) 25 %
c) 37,5 %
d) 62,5 %
e) 75 %
64 - De forma generalizada, qualquer elemento de uma matriz M pode ser representado por mij, onde i representa a linha e j a coluna em que esse elemento se localiza. Uma matriz S = sij, de terceira ordem, é a matriz resultante da soma entre as matrizes A = (aij) e B = (bij), ou seja, S = A + B.Sabendo-se que (aij) = i2 + j2 e que bij = (i + j)2,então a soma dos elementos da primeira linha da matriz S é igual a:
a) 17
b) 29
c) 34
d) 46
e) 58
65 - A remuneração mensal dos funcionários de uma empresa é constituída de uma parte fixa igual a R$ 1.500,00 mais uma comissão de 3% sobre o total de vendas que exceder a R$ 8.000,00. Calcula-se em 10% o percentual de descontos diversos que incidem sobre seu salário bruto (isto é, sobre o total da parte fixa mais a comissão). Em dois meses consecutivos, um dos funcionários dessa empresa recebeu, líquido, respectivamente, R$ 1.674,00 e R$ 1.782,00. Com esses dados, pode-se afirmar que as vendas realizadas por esse funcionário no segundo mês foram superiores às do primeiro mês em:
a) 8%
b) 10%
c) 14%
d) 15%
e) 20%
66 - Os números A, B e C são inteiros positivos tais que A < B < C. Se B é a média aritmética simples entre A e C, então necessariamente a razão (B - A) / (C - B) é igual a:
a) A / A
b) A / B
c) A / C
d) B / C
e) - (B/B)
67 - Em uma sala de aula estão 10 crianças sendo 6 meninas e 4 meninos. Três das crianças são sorteadas para participarem de um jogo. A probabilidade de as três crianças sorteadas serem do mesmo sexo é:
a) 15%
b) 20%
c) 25%
d) 30%
e) 35%
69 - A circunferência é uma figura constituída de infinitos pontos, que tem a seguinte propriedade: a distância de qualquer ponto P(x,y),da circunferência até o seu centro C(a,b) é sempre igual ao seu raio R. A forma geral da circunferência é dada por: (x - a)2 + (y - b)2 = R2. Assim, a equação da circunferência de centro na origem dos eixos e que passa pelo ponto (3,4) é:
a) x2 + y2 = 4
b) x2 + y2 = 9
c) x2 + y2 = 16
d) x2 + y2 = 25
e) x2 + y2 = 49
Gabarito
51 - B
53 - E
54 - A
55 - B
56 - C
57 - D
60 - E
61 - A
62 - D
64 - D
65 - E
66 - A
67 - B
69 - D
31 - A, B e C são matrizes quadradas de mesma ordem, não singulares e diferentes da matriz identidade. A matriz C é igual ao produto A Z B, onde Z é também uma matriz quadrada. A matriz Z, portanto, é igual a:
a) A-1 B C
b) A C-1 B-1
c) A-1 C B-1
d) A B C-1
e) C-1 B-1 A-1
a) A-1 B C
b) A C-1 B-1
c) A-1 C B-1
d) A B C-1
e) C-1 B-1 A-1
32 - Sete modelos, entre elas Ana, Beatriz, Carla e Denise, vão participar de um desfile de modas. A promotora do desfile determinou que as modelos não desfilarão sozinhas, mas sempre em filas formadas por exatamente quatro das modelos. Além disso, a última de cada fila só poderá ser ou Ana, ou Beatriz, ou Carla ou Denise. Finalmente, Denise não poderá ser a primeira da fila. Assim, o número de diferentes filas que podem ser formadas é igual a:
a) 420
b) 480
c) 360
d) 240
e) 60
a) 420
b) 480
c) 360
d) 240
e) 60
33 - Ana precisa chegar ao aeroporto para buscar uma amiga. Ela pode escolher dois trajetos, A ou B. Devido ao intenso tráfego, se Ana escolher o trajeto A, existe uma probabilidade de 0,4 de ela se atrasar. Se Ana escolher o trajeto B, essa probabilidade passa para 0,30. As probabilidades de Ana escolher os trajetos A ou B são, respectivamente, 0,6 e 0,4. Sabendo-se que Ana não se atrasou, então a probabilidade de ela ter escolhido o trajeto B é igual a:
a) 6/25
b) 6/13
c) 7/13
d) 7/25
e) 7/16
a) 6/25
b) 6/13
c) 7/13
d) 7/25
e) 7/16
34 - O reino está sendo atormentado por um terrível dragão. O mago diz ao rei: “O dragão desaparecerá amanhã se e somente se Aladim beijou a princesa ontem”. O rei, tentando compreender melhor as palavras do mago, faz as seguintes perguntas ao lógico da corte:
1. Se a afirmação do mago é falsa e se o dragão desaparecer amanhã, posso concluir corretamente que Aladim beijou a princesa ontem?
2. Se a afirmação do mago é verdadeira e se o dragão desaparecer amanhã, posso concluir corretamente que Aladim beijou a princesa ontem?
3. Se a afirmação do mago é falsa e se Aladim não beijou a princesa ontem, posso concluir corretamente que o dragão desaparecerá amanhã?
O lógico da corte, então, diz acertadamente que as respostas logicamente corretas para as três perguntas são, respectivamente:
a) Não, sim, não
b) Não, não, sim
c) Sim, sim, sim
d) Não, sim, sim
e) Sim, não, sim
a) Não, sim, não
b) Não, não, sim
c) Sim, sim, sim
d) Não, sim, sim
e) Sim, não, sim
35 - Se André é culpado, então Bruno é inocente. Se André é inocente, então Bruno é culpado. Se André é culpado, Leo é inocente. Se André é inocente, então Leo é culpado. Se Bruno é inocente, então Leo é culpado. Logo, André, Bruno e Leo são, respectivamente:
a) Culpado, culpado, culpado.
b) Inocente, culpado, culpado.
c) Inocente, culpado, inocente.
d) Inocente, inocente, culpado.
e) Culpado, culpado, inocente.
a) Culpado, culpado, culpado.
b) Inocente, culpado, culpado.
c) Inocente, culpado, inocente.
d) Inocente, inocente, culpado.
e) Culpado, culpado, inocente.
Gabarito:
31 - C
32 - A
33 - E
34 - D
35 - B
31 - Um grupo de estudantes encontra-se reunido em uma sala para escolher aleatoriamente, por sorteio, quem entre eles irá ao Simpósio de Matemática do próximo ano. O grupo é composto de 15 rapazes e de um certo número de moças. Os rapazes cumprimentam-se, todos e apenas entre si, uma única vez; as moças cumprimentam-se, todas e apenas entre si, uma única vez. Há um total de 150 cumprimentos. O número de moças é, portanto, igual a:
a) 10
b) 14
c) 20
d) 25
e) 45
a) 10
b) 14
c) 20
d) 25
e) 45
32 - Mauro, José e Lauro são três irmãos. Cada um deles nasceu em um estado diferente: um é mineiro, outro é carioca, e outro é paulista (não necessariamente nessa ordem). Os três têm, também, profissões diferentes: um é engenheiro, outro é veterinário, e outro é psicólogo (não necessariamente nessa ordem). Sabendo que José é mineiro, que o engenheiro é paulista, e que Lauro é veterinário, conclui-se corretamente que:
a) Lauro é paulista e José é psicólogo.
b) Mauro é carioca e José é psicólogo.
c) Lauro é carioca e Mauro é psicólogo.
d) Mauro é paulista e José é psicólogo.
e) Lauro é carioca e Mauro é engenheiro.
a) Lauro é paulista e José é psicólogo.
b) Mauro é carioca e José é psicólogo.
c) Lauro é carioca e Mauro é psicólogo.
d) Mauro é paulista e José é psicólogo.
e) Lauro é carioca e Mauro é engenheiro.
33 - Pedro e Paulo estão em uma sala que possui 10 cadeiras dispostas em uma fila. O número de diferentes formas pelas quais Pedro e Paulo podem escolher seus lugares para sentar, de modo que fique ao menos uma cadeira vazia entre eles, é igual a:
a) 80
b) 72
c) 90
d) 18
e) 56
a) 80
b) 72
c) 90
d) 18
e) 56
34 - Carlos não ir ao Canadá é condição necessária para Alexandre ir à Alemanha. Helena não ir à Holanda é condição suficiente para Carlos ir ao Canadá. Alexandre não ir à Alemanha é condição necessária para Carlos não ir ao Canadá. Helena ir à Holanda é condição suficiente para Alexandre ir à Alemanha. Portanto:
a) Helena não vai à Holanda, Carlos não vai ao Canadá, Alexandre não vai à Alemanha.
b) Helena vai à Holanda, Carlos vai ao Canadá, Alexandre não vai à Alemanha.
c) Helena não vai à Holanda, Carlos vai ao Canadá, Alexandre não vai à Alemanha.
d) Helena vai à Holanda, Carlos não vai ao Canadá, Alexandre vai à Alemanha.
e) Helena vai à Holanda, Carlos não vai ao Canadá, Alexandre não vai à Alemanha.
a) Helena não vai à Holanda, Carlos não vai ao Canadá, Alexandre não vai à Alemanha.
b) Helena vai à Holanda, Carlos vai ao Canadá, Alexandre não vai à Alemanha.
c) Helena não vai à Holanda, Carlos vai ao Canadá, Alexandre não vai à Alemanha.
d) Helena vai à Holanda, Carlos não vai ao Canadá, Alexandre vai à Alemanha.
e) Helena vai à Holanda, Carlos não vai ao Canadá, Alexandre não vai à Alemanha.
35 - O sultão prendeu Aladim em uma sala. Na sala há três portas. Delas, uma e apenas uma conduz à liberdade; as duas outras escondem terríveis dragões. Uma porta é vermelha, outra é azul e a outra branca. Em cada porta há uma inscrição. Na porta vermelha está escrito: "esta porta conduz à liberdade". Na porta azul está escrito: "esta porta não conduz à liberdade". Finalmente, na porta branca está escrito: "a porta azul não conduz à liberdade". Ora, a princesa " que sempre diz a verdade e que sabe o que há detrás de cada porta " disse a Aladim que pelo menos uma das inscrições é verdadeira, mas não disse nem quantas, nem quais. E disse mais a princesa: que pelo menos uma das inscrições é falsa, mas não disse nem quantas nem quais. Com tais informações, Aladim concluiu corretamente que:
a) a inscrição na porta branca é verdadeira e a porta vermelha conduz à liberdade.
b) a inscrição na porta vermelha é falsa e a porta azul conduz à liberdade.
c) a inscrição na porta azul é verdadeira e a porta vermelha conduz à liberdade.
d) a inscrição na porta branca é falsa e a porta azul conduz à liberdade.
e) a inscrição na porta vermelha é falsa e a porta branca conduz à liberdade.
a) a inscrição na porta branca é verdadeira e a porta vermelha conduz à liberdade.
b) a inscrição na porta vermelha é falsa e a porta azul conduz à liberdade.
c) a inscrição na porta azul é verdadeira e a porta vermelha conduz à liberdade.
d) a inscrição na porta branca é falsa e a porta azul conduz à liberdade.
e) a inscrição na porta vermelha é falsa e a porta branca conduz à liberdade.
36 - Há três moedas em um saco. Apenas uma delas é uma Área para rascunho moeda normal, com "cara" em uma face e "coroa" na outra. As demais são moedas defeituosas. Uma delas tem “cara” em ambas as faces. A outra tem "coroa" em ambas as faces. Uma moeda é retirada do saco, ao acaso, e é colocada sobre a mesa sem que se veja qual a face que ficou voltada para baixo. Vê-se que a face voltada para cima é "cara". Considerando todas estas informações, a probabilidade de que a face voltada para baixo seja "coroa" é igual a:
a) 1/2
b) 1/3
c) 1/4
d) 2/3
e) 3/4
a) 1/2
b) 1/3
c) 1/4
d) 2/3
e) 3/4
38 - Se de um ponto P qualquer forem traçados dois segmentos tangentes a uma circunferência, então as medidas dos segmentos determinados pelo ponto P e os respectivos pontos de tangência serão iguais. Sabe-se que o raio de um círculo inscrito em um triângulo retângulo mede 1 cm. Se a hipotenusa desse triângulo for igual a 20 cm, então seu perímetro será igual a:
a) 40 cm
b) 35 cm
c) 23 cm
d) 42 cm
e) 45 cm
a) 40 cm
b) 35 cm
c) 23 cm
d) 42 cm
e) 45 cm
39 - O raio do círculo A é 30% menor do que o raio do círculo B. Desse modo, em termos percentuais, a área do círculo A é menor do que a área do círculo B em:
a) 51%
b) 49%
c) 30%
d) 70%
e) 90%
a) 51%
b) 49%
c) 30%
d) 70%
e) 90%
Gabarito
31-A
32-D
33-B
34-C
35-E
36-B
38-D
39-A
36-B???
ResponderExcluirA RESPOSTA DA 36 SÓ PODE SER "A", ou seja: 1/2. Pois, a terceira moeda (coroa e coroa) deve ser desconsiderada, uma vez que, certamente, a moeda com "cara" pra cima não pode ser ela. Então, só existe uma moeda no saco que podem ter "coroa" do lado debaixo e "cara" pra cima. A outra hipótese é a viciada com duas caras mas nunca a coroa-coroa, pois, a face pra cima é "cara".
Concordo sobre o seguinte tira-teima:
ExcluirCaso a situação em questão se repita mil vezes. Ao virarmos as moedas tenho certeza que em aproximadamente 500 teremos a "coroa", uma vez que estamos falado, depois das premissas iniciais, de somente duas moedas, e que qualquer umas delas pode ser a resposta. Só teria algum nexo outro raciocínio, se as moedas que tem os mesmos lados, fossem diferenciáveis por outros aspectos, o que, nem de longe, ficou claro na questão.